Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Fracture Behaviour of Steels and Their Welds for Power Industry
Al Khaddour, Samer ; Kohout, Jan (oponent) ; Válka, Libor (oponent) ; Dlouhý, Ivo (vedoucí práce)
The aim of the study is to verify the validity of the master curve concept for evaluation of the dissimilar weld joint and/or thermally aged weld joints. In addition, the thesis is focused on development of quantitative models for the prediction of reference temperature characterising position of the fracture toughness transition on the temperature axis using experimental data collected from tensile tests, together with a powerful computational technique known as neural network. This study focuses on the evaluation of the fracture behaviour of welds carried out by fusion welding. It aims to investigate the fracture behaviour in transition region of the structural steels and welds with ferritic basic microstructures by means of reference temperature. In order to obtain the reference temperature artificial neural network is used exploting tensile test and hardness test data. Creating a model using neural network method requires a sufficient amount of data and it is sometimes not possible to accomplish easily. Creating a truly general model requires a combination of data and metallurgical knowledge. So, the aim of this work is also to develop artificial neural network enabling to predict the reference temperature. In total 29 experimental data sets from low alloy steels have been applied to validate the model of reference temperature prediction. The tensile tests have been done at general yield temperature of circumferential notched tensile tests (purely general yield temperature) and at room temperature (purely ductile fracture temperature). To build the model all parameters of tensile test and hardness values were used as input variables. The study indicated that the reference temperature characterizing the fracture toughness transition behaviour in low alloy steels with predominantly ferritic structure is predictable on the basis of selected characteristics of tensile test.
Fracture Behaviour of Steels and Their Welds for Power Industry
Al Khaddour, Samer ; Kohout, Jan (oponent) ; Válka, Libor (oponent) ; Dlouhý, Ivo (vedoucí práce)
The aim of the study is to verify the validity of the master curve concept for evaluation of the dissimilar weld joint and/or thermally aged weld joints. In addition, the thesis is focused on development of quantitative models for the prediction of reference temperature characterising position of the fracture toughness transition on the temperature axis using experimental data collected from tensile tests, together with a powerful computational technique known as neural network. This study focuses on the evaluation of the fracture behaviour of welds carried out by fusion welding. It aims to investigate the fracture behaviour in transition region of the structural steels and welds with ferritic basic microstructures by means of reference temperature. In order to obtain the reference temperature artificial neural network is used exploting tensile test and hardness test data. Creating a model using neural network method requires a sufficient amount of data and it is sometimes not possible to accomplish easily. Creating a truly general model requires a combination of data and metallurgical knowledge. So, the aim of this work is also to develop artificial neural network enabling to predict the reference temperature. In total 29 experimental data sets from low alloy steels have been applied to validate the model of reference temperature prediction. The tensile tests have been done at general yield temperature of circumferential notched tensile tests (purely general yield temperature) and at room temperature (purely ductile fracture temperature). To build the model all parameters of tensile test and hardness values were used as input variables. The study indicated that the reference temperature characterizing the fracture toughness transition behaviour in low alloy steels with predominantly ferritic structure is predictable on the basis of selected characteristics of tensile test.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.